Segmenting Images by Combining Selected Atlases on Manifold
نویسندگان
چکیده
Atlas selection and combination are two critical factors affecting the performance of atlas-based segmentation methods. In the existing works, those tasks are completed in the original image space. However, the intrinsic similarity between the images may not be accurately reflected by the Euclidean distance in this high-dimensional space. Thus, the selected atlases may be away from the input image and the generated template by combining those atlases for segmentation can be misleading. In this paper, we propose to select and combine atlases by projecting the images onto a low-dimensional manifold. With this approach, atlases can be selected according to their intrinsic similarity to the patient image. A novel method is also proposed to compute the weights for more efficiently combining the selected atlases to achieve better segmentation performance. The experimental results demonstrated that our proposed method is robust and accurate, especially when the number of training samples becomes large.
منابع مشابه
Segmenting Hippocampus from 7.0 Tesla MR Images by Combining Multiple Atlases and Auto-Context Models
In investigation of neurological diseases, accurate measurement of hippocampus is very important for differentiating inter-subject difference and subtle longitudinal change. Although many automatic segmentation methods have been developed, their performance can be limited by the poor image contrast of hippocampus in the MR images, acquired from either 1.5T or 3.0T scanner. Recently, the emergen...
متن کاملMulti-atlas propagation via a manifold graph on a database of both labeled and unlabeled images
We present a framework for multi-atlas based segmentation in situations where we have a small number of segmented atlas images, but a large database of unlabeled images is also available. The novelty lies in the application of graph-based registration on a manifold to the problem of multi-atlas registration. The approach is to place all the images in a learned manifold space and construct a gra...
متن کاملSegmenting Cardiopulmonary Images Using Manifold Learning with Level Sets
Cardiopulmonary imaging is a key tool in modern diagnostic and interventional medicine. Automated analysis of MRI or ultrasound video is complicated by limitations on the image quality and complicated deformations of the chest cavity created by patient breathing and heart beating. When these are the primary causes of image variation, the video sequence samples a two-dimensional, nonlinear manif...
متن کاملIterative multi-atlas-based multi-image segmentation with tree-based registration
In this paper, we present a multi-atlas-based framework for accurate, consistent and simultaneous segmentation of a group of target images. Multi-atlas-based segmentation algorithms consider concurrently complementary information from multiple atlases to produce optimal segmentation outcomes. However, the accuracy of these algorithms relies heavily on the precise alignment of the atlases with t...
متن کاملLEAP: Learning embeddings for atlas propagation
We propose a novel framework for the automatic propagation of a set of manually labeled brain atlases to a diverse set of images of a population of subjects. A manifold is learned from a coordinate system embedding that allows the identification of neighborhoods which contain images that are similar based on a chosen criterion. Within the new coordinate system, the initial set of atlases is pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 14 Pt 3 شماره
صفحات -
تاریخ انتشار 2011